Методические указания МНК

Методические указания МНК Для дачи

Наиболее часто встречающиеся ошибки в описании и интерпретации

  1. Исследование капли в повреждённой части. Чтобы избежать ошибок, нужно анализировать образец в центральной части, так как при растекании по сухому стеклу максимально повреждаются клетки наружного слоя. По периметру препарата практически все эритроциты превращаются в эхиноциты, либо образуют густые плотные скопления деформированных клеток.
  2. Изменение формы клеток при движении. При диагностике необходимо учесть один важный момент: когда мы накрываем каплю покровным стеклом, возникает спонтанное движение крови, что может неправильно интерпретироваться как движение эритроцитов. Самостоятельно в крови двигаться могут только лейкоциты. Эритроциты и тромбоциты передвигаются исключительно с током крови. Эти клетки не имеют способности к самостоятельному передвижению.Учитывая наличие большого количества рецепторов и антигенных детерминант на поверхности эритроцита, представляется разумным понимать возможность сцепления клетки с поверхностью стекла и изменения ее формы.
  3. Выросты на клетках. В ряде научных работ показана способность клеток образовывать отростки на мембране – цитоплазматические выросты. Функция данных структур у эритроцита пока не очень понятна, но доказано, что эти образования не имеют ничего общего со жгутиками простейших.
  4. Монослой. Важным моментом в приготовлении препарата является помещение капли крови под покровное стекло. Последнее должно равномерно накрыть каплю и распределить клетки монослоем. Если покровное стекло не прилегает равномерно к капле, клетки крови не распределяются в монослой, что делает невозможным диагностику.
  5. Раздавливание капли. Если покровное стекло сильно прижать, клетки раздавливаются, эритроциты теряют форму двояковогнутого диска, сплющиваются, приобретают вид «теней».
  6. Попадание в кровь посторонних веществ. Эритроциты будут выглядеть поврежденными, если в кровь, например, попал спирт при обработке пальца (кожу пальца не высушили).

Введение

Кровь – это уникальная субстанция нашего организма. От ее состава и физико-химических свойств зависит здоровье человека. В свою очередь, состояние крови является отражением всех обменных процессов, протекающих в организме, функциональной активности его органов и систем и, конечно же, патологических нарушений в них.

Со времен изобретения Антонием Левенгуком микроскопа, в изучении свойств крови наука прошла большой путь развития. За этот период создано колоссальное количество методов исследования этой важнейшей жидкой среды организма. Различные типы микроскопии, окраски препаратов, цитохимические и радиоизотопные методы, ИФА, ПЦР – это лишь очень неполный перечень существующих на сегодняшний день способов ее изучения.

Но наиболее часто в клинической лабораторной практике для исследования крови используется микроскопия окрашенного мазка. Для этого мазок крови предварительно высушивается, фиксируется и окрашивается, а затем производится подсчёт форменных элементов и описывается морфология клеток.

Нативную или живую кровь (без фиксации и окраски) микроскопируют достаточно редко. А между тем исследование «живой» капли – самый простой, информативный и минимально затратный метод исследования крови, который известен давно и широко использовался еще в прошлые века.

И вот сегодня, в эру компьютеров и цифровых технологий, внимание к методу исследования нативной крови вновь возрастает и приобретает все большую популярность. Микроскоп удалось соединить с цифровой видеокамерой, телевизором и компьютером, что увеличило его разрешающую способность и дало возможность визуализировать на экране объекты крови, трудно различимые в обычный световой микроскоп, и, что очень важно, сохранять изображения для дальнейшей работы.

Это позволило не только просматривать клеточные элементы крови, но и оценивать их динамические функциональные характеристики, выявлять биологические контаминанты в плазме, а также производить демонстрацию исследования пациенту. Последнее обстоятельство очень важно, поскольку включение пациента в диагностический процесс и получение им возможности оценки собственного состояния имеет огромное значение для привлечения его к эффективному сотрудничеству с врачом в вопросах восстановления его собственного здоровья.

В тоже время существуют определенные сложности с адаптацией исследования нативной крови к требованиям стандартизации и контроля качества по системе ФСФОК. В практическом же использовании метода возникает ряд вопросов по идентификации визуализируемых объектов вследствие недостаточного количества научно обоснованных данных по интерпретации результатов.

Ii. микроскопия крови

Увеличение и разрешающая способность светового микроскопа позволяют визуализировать в крови в основном только нижеперечисленные объекты:

1. Клетки крови

Эритроциты:

— нормальные дискоциты (6–8 мкм);

— анизоциты (микро- и макроформы 4–15 мкм);

— пойкилоциты (клетки с измененной формой);

— анизохромные (с различной окраской);

— юные и незрелые формы (ретикулоциты, нормобласты);

— эхиноциты, стоматоциты, шлемовидные эритроциты;

— гемолизированные эритроциты и другие формы деградации и старения эритроцитов;

— включения в эритроцитах (остатки ядра);

— агрегаты эритроцитов.

Лейкоциты:

— гранулоциты (нейтрофилы, эозинофилы, базофилы);

— агранулоциты (моноциты, Т- и В-лимфоциты);

— плазматические клетки;

— юные и незрелые формы (в том числе бластные).

Тромбоциты (молодые и старые клетки) различного размера (до 5 -10 мкм) и их скопления.

2. Фибрин (в виде нитей и тяжей).

3. Хиломикроны (шарообразные опалесцирующие структуры светло-зеленого цвета размером до 5–8 мкм).

4. Бактерии разного размера и формы, подвижные и неподвижные (примечание: без видовой идентификации!).

5. Одноклеточные простейшие паразиты (малярийный плазмодий, пироплазма, токсоплазма, лейшмания, трепаносома, возможно – трихомонада), несовершенные грибы (в т. ч. диморфные), Candida, колонии микоплазмы или уреаплазмы.

6. Возможно обнаружение яиц глистов и миграционных личиночных стадий некоторых гельминтов (микрофилярий, аскарид, анкилостом, некатора, трихинелл и др.). Диагностика гельминтозов проводится с учетом их макроразмеров (значительно крупнее эритроцита, примерно от 100 и больше мкм)!!!

Алгоритм проведения гемотрансфузии

Правила клинического использования донорской крови и (или)ее компонентов.

Система АВО
Основными антигенами системы АВО являются 2-А и В. В качестве
отдельных специфичностей в ней выделяют еще 2антигена-А, В и А1.
Отсутствие на эритроцитах указанных 4 антигенов обозночают О.
Антитела анти-А и анти-В имеют естественное происхождение. Они
обозначены греческими α иβ.
Различают 4 группы крови, образуемые сочетаниями антигенов А и В с изогемагглютининами α иβ. На эритроцитах первой группы О (I), антигены А и В отсутствуют, в плазме содержатся антитела α иβ. Во вторй группе крови А (II) , на эритроцитах имеется антиген А, в плазме присутствуют антитела β. В третей группе В (III) содержатся антиген В и антитела α. В четвертой группе АВ (IV) присутствуют антигены АиВ, в сыворотке крови отсутствуют изоггемаглютинины α и β.

Резус Rh фактор

Резус фактор это антиген содержащийся в эритроцитах 85% людей, а также у обезьян Macaus rhesus.
Кровь людей, эритроциты которых содержат Rh, называются положительной.
Существует несколько различных антигенов системы Rh, в том числе группа Нr, составляющая с Rh общую систему.
Rh-Hr
Включающую в себя -3 разновидности Rh агглютиногена (С, Д, Е)
-3разновидности Нr агглютиногена (с, д, е) и другие более редкие виды.
Агглютиноген Нr содержится в эритроцитах 83% людей.
Резус фактор передается по наследству как доминантный признак и не меняется в течение всей жизни.

Переливание компонентов крови имеет право проводить:
-Лечащий или дежурный врач.
-Во время операции хирург или анестезиолог (не участвующий в операции или наркозе).
-Врач отделения или кабинета гемотрансфузии.
-Врач -трансфузиолог.

Определение группы крови по системе АВО
(С применением цоликлонов)
-2 капли (0, 1 мл) реагента и рядом по одной капле осадка эритроцитов (0, 02 — 0, 03 мл)
-Сыворотку и эритроциты перемешивают стеклянной палочкой
-Пластинку периодически покачивают, наблюдая за ходом реакции в течение 5 мин (позволяет выявить слабый агглютиноген А2)
-производят интерпретацию результатов

Трудноопределимые группы крови

Подгруппы крови. Антиген А, содержащийся в эритроцитах группы А (II) и AB (IV), может быть представлен двумя вариантами (подгруппами) — А_1 и А_2. Антиген В таких различий не имеет.
Неспецифическая агглютинация эритроцитов. О ней судят на основании способности эритроцитов агглютинироваться сыворотками всех групп, включая AB (IV).

Неспецифическая агглютинация наблюдается при аутоиммунной гемолитической анемии и других аутоиммунных заболеваниях, сопровождающихся адсорбцией аутоантител на эритроцитах, при гемолитической болезни новорожденных, эритроциты которых нагружены аллоантителами матери.

Кровяные химеры. Кровяными химерами называют одновременное пребывание в кровяном русле двух популяций эритроцитов, отличающихся по группе крови и другим антигенам.

Трансфузионные химеры возникают в результате многократного переливания эритроцитной массы или взвеси группы 0 (I) реципиентам другой группы. Истинные химеры встречаются у гетерозиготных близнецов, а также после пересадки аллогенного костного мозга.

Другие особенности. Определение группы крови АВ0 и резус принадлежности может быть затруднено у больных в связи с изменением свойств эритроцитов при различных патологических состояниях (у больных циррозом печени, при ожогах, сепсисе).

Определение резус -принадлежности

Наносят большую каплю (около 0, 1 мл) реагента на планшет. Наносят рядом маленькую каплю (0, 02-0, 03 мл) исследуемых эритроцитов.
Тщательно смешивают реагент с эритроцитами стеклянной палочкой.
Мягко покачивают пластинку.
Результаты реакции учитывают через 3 мин после смешивания.
При наличии агглютинации исследуемая кровь маркируется как резус положительная, при отсутствии — как резус отрицательная.

Проба на совместимость на плоскости при комнатной температуре

для проведения проб на индивидуальную совместимось используется кровь ( сыворотка) больного, взятая перед трансфузией или не более чем за 24 часа, при условии хранения при температуре 4 2°С.

На пластинку наносят 2 — 3 капли сыворотки реципиента и добавляют небольшое количество эритроцитов с таким расчетом, чтобы соотношение эритроцитов и сыворотки было 1: 10
Далее эритроциты перемешивают с сывороткой, пластинку слегка покачивают в течение 5 мин.

Проба на совместимость с применением 33%полиглюкина

В пробирку вносят 2 капли (0, 1 мл) сыворотки реципиента 1 каплю (0, 05) мл эритроцитов донора и добавляют 1 каплю (0, 1 мл) 33% полиглюкина.

Пробирку наклоняют до горизонтального положения, слегка потряхивая, затем медленно вращают таким образом, чтобы содержимое ее растеклось по стенкам тонким слоем. Контакт эритроцитов с сывороткой больного при вращении пробирки следует продолжать не менее 3 мин.

Через 3 — 5 мин в пробирку добавляют 2 — 3 мл физиологического раствора и перемешивают содержимое путем 2 — 3-х кратного перевертывания пробирки, не взбалтывая.

Результат учитывают, просматривая пробирки на свет невооруженным глазом или через лупу. Агглютинация эритроцитов свидетельствует о том, что кровь реципиента и донора несовместимы, отсутствие агглютинации является показателем совместимости крови донора и реципиента.

Технические ошибки

Ошибочный порядок расположения реагентов.
Температурные условия (определение группы крови производят при температуре не ниже 15°Си не выше 25°С)
Соотношение реагентов и исследуемых эритроцитов.
Продолжительность наблюдения. (позволяет выявить слабый агглютиноген А_2, характеризующийся замедленной агглютинацией)

Биологическая проба

Биологическую пробу проводят независимо от объема гемотрансфузионной среды и скорости ее введения.

При необходимости переливания нескольких доз компонентов крови биологическую пробу проводят перед началом переливания каждой новой дозы.

Техника проведения биологической пробы:
однократно переливается 10 мл гемотрансфузионной среды со скоростью 2 — 3 мл (40 — 60 капель) в мин

в течение 3 мин наблюдают за реципиентом, контролируя у него пульс, дыхание, артериальное давление, общее состояние, цвет кожи, измеряют температуру тела

такую процедуру повторяют еще дважды. Появление в этот период даже одного из таких клинических симптомов, как озноб, боли в пояснице, чувство жара и стеснения в груди, головной боли, тошноты или рвоты, требует немедленного прекращения трансфузии и отказа от переливания данной трансфузионной среды.

Экстренность трансфузии компонентов крови не освобождает от выполнения биологической пробы!!!

Врач, проводящий переливание компонентов крови обязан:

1.Определить      показания   для проведения   гемотрансфузионной терапии    с    учетом    противопоказаний.

2. Получить информированное добровольное согласие реципиента или его законного представителя на проведение гемотрансфузионной терапии по установленной форме.

3. Провести первичное определение групповой принадлежности крови больного по системе АВО.

КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ ИСПОЛЬЗОВАТЬ ДАННЫЕ О ГРУППОВОЙ ПРИНАДЛЕЖНОСТИ ПО СИСТЕМАМ АВО И РЕЗУС ИЗ ПАСПОРТА, ПРЕДШЕДСТВУЮЩЕЙ ИСТОРИИ БОЛЕЗНИ И ДРУГИХ ДОКУМЕНТОВ.

4. Внести в направление в клинико-диагностическую лабораторию (форма № 207/у), сведения о результате определения группы крови по системе АВО, серии диагностикумов, трансфузионный и акушерско-гинекологический анамнез. Подписать направление

5. Ознакомиться с заключением клинико-диагностической лаборатории. Перенести данные о групповой и резус-принадлежности больного на лицевую часть медицинской карты стационарного больного с указанием даты анализа и своей фамилии.

6. Оформить предтрансфузионный эпикриз.

7. Провести макроскопическую оценку лабораторного желатина и диагностикумов.

8. Провести макроскопическую оценку каждой дозы гемотрансфузионной среды.

9. Повторно непосредственно перед трансфузией определить группу крови реципиента по системе АВО

10. Определить группу крови по системе АВО с эритроцитсодержащей средой.

11. Проконтролировать соответствие паспортных данных.

12. Провести пробу на совместимость крови реципиента и крови донора (гемотрансфузионной среды) по системам АВО и резус.

13. Зафиксировать результат изосерологических исследований в протоколе операции переливания крови.

ПРОБЫ НА ИНДИВИДУАЛЬНУЮ СОВМЕСТИМОСТЬ ПО СИСТЕМЕ АВО И РЕЗУС НЕ ЗАМЕНЯЮТ ДРУГ ДРУГА.

ПРОВОДЯТСЯ ВО ВСЕХ СЛУЧАЯХ С ОБРАЗЦАМИ КРОВИ ИЗ КАЖДОГО КОНТЕЙНЕРА.

ОБЯЗАТЕЛЬНЫ, ДАЖЕ ЕСЛИ ЭРИТРОЦИТНАЯ МАССА ИЛИ ВЗВЕСЬ ПОДОБРАНЫ РЕЦИПИЕНТУ ИНДИВИДУАЛЬНО В СПЕЦИАЛИЗИРОВАННОЙ ЛАБОРАТОРИИ.

14. Провести биологическую пробу. Зафиксировать её результат в протоколе операции переливания крови.

15. Контролировать состояние реципиента, темп введения трансфузионной среды.

16. При изменении состояния больного в первую очередь исключить посттрансфузионное осложнение.

17. Оценить показатели артериаль­ного давления, пульса, результаты термометрии.

18. Зарегистрировать гемотрансфузию:

•в дневнике наблюдений медицинской карты стационарного больного;

•в журнале регистрации переливаний крови и её компонентов (форма № 009/у) ;

•заполнить протокол гемотрансфузии

19. Провести макрооценку первой порции мочи.

20. Назначить клинические анализы крови и мочи на следующие сутки после гемотрансфузии.

21. Провести оценку суточного диуреза, водного баланса, результатов анализов мочи и крови.

22. Наблюдать за больным с отражением результатов наблюдения в дневнике истории болезни. При изменении клинической симптоматики и лабораторных показателей до выписки больного из стационара в первую очередь исключить посттрансфузионное осложнение.

Осложнения
-Иммунные осложнения ( острый гемолиз, гипертермическая негемолитическая реакция, анафилактический шок, некардиогенный отек легких)

-Неиммунные осложнения (острый гемолиз, бактериальный шок, ОССН, отек легких)

-Непосредственные осложнения (аллоиммунизация антигенами эритроцитов, лейкоцитов, тромбоцитов или плазменными белками, гемолиз, реакция <<трансплантат против хозяина>>, посттрансфузионная пурпура)

Отдаленные осложнения

-Иммунные ( гемолиз, Реакция «трансплантат против хозяина», Посттрансфузионная пурпура, Аллоиммунизация антигенами эритроцитов, лейкоцитов, тромбоцитов или плазменными белками

Литература:

А. Г. Румянцев, В. А. Аграненко. Клиническая трансфузиология-М.: ГЭОТАР МЕДИЦИНА, 1997.

Е. Б. Жибурт. Трансфузиология-С.: ПИТЕР, 2002.

Правила и аудит переливания крови. Руководство для врачей. -М. , РАЕН, 2021.

Рагимов А. А. Трансфузиология. Национальное руководство-М.: ГЭОТАР Медиа, 2021.

С. И. Донсков, В. А. Мороков. Группы крови человека: Руководство по иммуносерологии-М.: ИП Скороходов В. А. , 2021.

Жибурт Е. Б. Менеджмент крови пациента//Здравоохранение. -2021.

Алгоритмы исследования антигенов эритроцитов и антиэритроцитарных антител в сложнодиагностируемых случаях. Методические рекомендации N 99/181 (утв. Минздравом России 17. 05. 2000)

Приказ Минздрава России от 25. 11. 2002 N363 » Об утверждении Инструкции по применению компонентов крови»

Приказ Минздрава России от 02. 04. 2021 N183н » Об утверждении правил клинического использования донорской крови и (или) ее компонентов»

Статья добавлена 3 июня 2021 г.

Бактерии

В настоящее время наиболее распространённой классификацией, используемой большинством микробиологов и бактериологов, является классификация Берджи. Согласно этой классификации, прокариоты (бактерии) делятся на два домена «Bacteria» и «Archaea».

При нативной микроскопии мы не можем идентифицировать вид бактерий, а потому следует говорить лишь об их форме и размере.

Формы бактерий наблюдаются самые разнообразные: сферические или кокки, диплококки, палочковидные, извитые, спиралевидные и т.д.; размер их может варьировать от 0,15 мкм (микоплазмы) до 8 мкм (палочковидные) и до 50 мкм у актиномицетов. Стафилококк – грамположительный круглый кокк размером 1 мкм, стрептококк – кокк неправильной формы, неподвижен, размер от 0,5 до 2 мкм.

Можно абсолютно точно утверждать, что бактерии попадают в диапазон разрешающей способности светового микроскопа, а потому их можно наблюдать при исследовании нативной крови.

Бактерии не находятся в крови постоянно, они лишь транзиторно проходят через кровь, и их наличие в препарате не всегда является признаком патологии.

К домену бактерий современными классификаторами отнесены и не совсем обычные микроорганизмы. Речь идет о микоплазме и уреоплазме. У этих бактерий отсутствует клеточная стенка. Другой их особенностью является то, что они длительно могут персистировать в организме, являясь его условно-патогенной флорой, и не провоцирвать симптоматики.

Но при определённых условиях, эти микроорганизмы способны вызывать как острые, так и хронические вялотекущие со стёртой клиникой заболевания, например при снижении иммунитета либо при резком увеличении микробных тел. В этих случаях нативная микроскопия позволяет обнаруживать полиморфные колонии бактерий (микроорганизм слишком мелкий) и большое их количество, особенно после проведения функциональной пробы с водной нагрузкой.

Гельминты

Гельминты – многоклеточные паразитические черви. Термин «гельминтозы» был введен еще Гиппократом. Сегодня известно более 100 тысяч видов паразитических червей. У человека описано их более 250 видов. Проблема гельминтозов стала чрезвычайно актуальна в настоящее время.

По форме тела и циклам развития выделяют три различных группы гельминтов: нематоды, трематоды и цестоды.

Не углубляясь в классификацию, описание морфологии и жизненного цикла гельминтов, приведём лишь их размеры и возможность обнаружения в капиллярной периферической крови при микроскопии.

По современным научным данным (научно-обоснованным и официально подтверждённым), в периферической крови могут быть обнаружены следующие виды гельминтов в личиночной их стадии: анкилостома, некатор, аскарида, токсокара, бругия, вухерерия, лоа лоа, стронгилоид, трихинелла, шистосома.

Размеры взрослых особей, их личинок и яиц весьма значительны. Ниже представлены некоторые из них, приведённые в официальных документах (МУК 2.1.7.730-99 (По состоянию на 18 октября 2006 года) «Гигиеническая оценка качества почвы населённых пунктов», МУК 13-4-2/1751 «Возбудители гельминтозоонозов в пресноводных рыбах» от 04.10.99):

  • Шистосома (Schistosoma mansoni) – 10–16 х 0,17–1,2 мм (самые крупные яйца среди гельминтов 140–150 мкм).
  • Описторхи (Opisthorchis felineus) – 5,4–10,2 х 0,8–1,9 мм (яйца 30–40 мкм).
  • Фасциола гепатика (Fasciola hepatica) – 20–30 х 8–13 мм (самые крупные яйца среди гельминтов 130–150 мкм).
  • Вухерерия (Wuchereria bancrofti) – 80–100 х 0,24–0,3 мм, микрофилярия – 127–320 х 7–10 мкм.
  • Анкилостома (Ancylostoma duodenale) – 10–13 х 0,4–0,6 мм (яйца 60 х 40 мкм, рабдитовидная личинка 250 х 16 мкм, филяриевидная – 660 х 17мкм).
  • Стронгилоид (Strongyloides stercoralis) – 2,2 х 0,03–0,07 мм.
  • Размеры бычьего и свиного цепня измеряются метрами!
  • Личинки аскариды во время миграции по кровяному руслу дважды линяют и увеличиваются в размере с 0,19–0,25 до 1,5–2,2 мм в длину. Размер оплодотворённых яиц составляет 50–70 х 40–50 мкм, а неоплодотворённых — 50–100 х 40–60 мкм.
  • Метацеркарии трематод Opisthorchis felineus 0,28–0,38 х 0,18–0,28 мм, Еchinochasmus perfoliatus 0,080–0,11 х 0,079–0,098 мм.

Обращаем ваше внимание на то, что указаны величины личинок, паразитирующих в рыбе. Продолжая свой жизненный цикл в организме человека, они еще больше увеличиваются в размерах.

Размеры гельминтов и их личинки значительно превышают величину не только клеток крови, но и капиллярного русла. Поэтому возможность встретить их при микроскопии периферической капиллярной крови – скорее исключение, чем правило.

Гематокрит


При расшифровке биохимического анализа крови особое место выделяют такому показателю, как гематокрит. Он указывает на отношение объема клеток крови к общему объему крови и выражается в процентах.

Нормы гематокрита:

  • у женщин – от 36 до 46%,
  • у мужчин – от 40 до 48%.

Повышение уровня гематокрита регистрируется при потере большого объема жидкости, характерной для рвоты и диареи; выхода жидкости в брюшную или грудную полость; повышения количества лейкоцитов.

Если при расшифровке биохимического исследования крови наблюдается низкий уровень гематокрита, то это свидетельствует о следующих состояниях:

  • наличие анемий;
  • отравление ядами;
  • высокая концентрация белков.

Гематокрит в ОАК

У женщин низкий уровень гематокрита может говорить о наступлении беременности. Биохимические исследования крови являются важным показателем при установке диагноза пациента и назначении лечения. Сдавать общий анализ крови рекомендовано не только при возникновении недомоганий, но и в целях диагностики организма на отсутствие болезней.

Заключение

Интерпретация полученных результатов проводится на приеме у врача, который назначил анализ. Специалист учитывает половую принадлежность и возраст пациента. На основании полученных данных врач разрабатывает индивидуальную схему лечения.

Самостоятельная расшифровка полученных результатов может привести к получению ложного представления о диагнозе. Без определенных знаний невозможно определить состояние здоровья даже при наличии результатов анализа крови. Доверяйте расшифровку результатов лабораторных исследований опытным специалистам.

Гормоны гипофиза:

  • ТТГ (тиреотропный гормон) – стимулирует выработку гормонов щитовидной железы (Т3 и Т4). Нормальные значения: 0,4-4,0 мЕд/л. Повышенное значение ТТГ, как правило, свидетельствует о пониженной функции щитовидной железы.
  • ФСГ (фолликулостимулирующий гормон). Нормальные значения: у женщин – зависит от фазы менструального цикла. I фаза – 3,35-21,63 мЕд/мл; II фаза – 1,11-13,99 мЕд/мл; постменопауза – 2,58-150,53 мЕд/мл; девочки до 9 лет 0,2-4,2 мЕд/мл. У мужчин – 1,37-13,58 мЕд/мл.
  • ЛГ (лютеинизирующий гормон). Нормальные значения: у женщин – зависит от фазы менструального цикла. I фаза – 2,57-26,53 мЕд/мл; II фаза – 0,67-23,57 мЕд/мл; постменопауза — 11,3-40 мЕд/мл; девочки до 9 лет  — 0,03-3,9 мЕд/мл. У мужчин – 1,26-10,05 мЕд/мл.
  • Пролактин. Основная функция – стимулирование развитие молочных желез и лактации. Нормальные значения: у женщин (от первой менструации до менопаузы) —  1,2-29,93 нг/мл; у мужчин — 2,58-18,12 нг/мл. Повышенная концентрация пролактина называется гиперпролактинемией. Различают физиологическую и патологическую гиперпролактинемию. Физиологическая гиепрпролактинемия может быть вызвана кормлением грудью, беременностью, сильными физическими нагрузками, стрессом. Повышенная концентрация пролактина у женщин приводит к нарушению менструального цикла, может быть причиной бесплодия. У мужчин гиперпролактинемия ведет к снижению полового влечения и импотенции.
  • АКТГ (адренокортикотропный гормон) – стимулирует синтез и секрецию гормонов коры надпочечников. Нормальные значения: 9-52 пг/мл.
  • Некоторые другие.

Гранулоциты

По структуре гранул выделяют три группы клеток:

1. Нейтрофилы

2. Эозинофилы

3. Базофилы

Нейтрофилы составляют 60–70% общего числа лейкоцитов. Нейтрофилы рассматриваются как первая линия защиты организма. Основная функция этих клеток – участие в борьбе с микроорганизмами.

В зависимости от степени зрелости и строения ядра выделяют палочкоядерные и сегментоядерные нейтрофилы.

Палочкоядерные нейтрофилы имеют диаметр 10–18 мкм. Во время движения могут вытягиваться до весьма значительных размеров. Ядро клеток выглядит, как длинная изогнутая палочка без перемычек.

Сегментоядерные нейтрофилы имеют диаметр 10–16 мкм. Их ядро состоит из 2–5 сегментов и расположено центрально. Иногда из-за перегиба ядра перемычка между сегментами бывает не видна. Такую клетку принято относить к сегментоядерной.

Неактивные нейтрофилы имеют округлую форму, малоподвижны. Если размер нейтрофила равен или меньше размера эритроцита, можно говорить о снижении иммунитета.

Эозинофилы составляют 0,5–5% всех лейкоцитов в крови. По морфологии ядра выделяют палочкоядерные и сегментоядерные эозинофилы (аналогично нейтрофилам). Характерная особенность данных клеток – специфическая зернистость цитоплазмы. Гранулы эозинофилов ярче и крупнее, чем у нейтрофилов.

Гранулы эозинофилов содержат главный щелочной (противопаразитарный) белок и значительное количество ферментов. Обладая слабой фагоцитарной активностью, эозинофилы вызывают внеклеточный цитолиз и участвуют в противогельминтном иммунитете. Объектом фагоцитоза могут быть бактерии, грибы, продукты распада тканей, иммунные комплексы. Важной функцией эозинофилов является и участие их в аллергических реакциях.

Базофилы составляют всего 0,5% от общего числа лейкоцитов. Это достаточно редко встречающаяся клетка. Базофилы подвижны, способны к фагоцитозу. В гранулах клеток содержатся гистамин, лейкотриены, тромбоксаны, ферменты и другие биологически активные вещества, поддерживающие реакции воспаления.

Как уже отмечалось, основная функция гранулоцитов – фагоцитоз, поэтому все они обладают способностью к передвижению, что и наблюдается в нативном препарате.

В норме в поле зрения (могут быть не в каждом) встречаются единичные гранулоциты. Они в 2–3 раза крупнее эритроцитов, подвижны. При угнетении иммунитета клетки становятся мельче, практически соотносимыми с размерами эритроцитов и малоподвижными.

В процессе развития воспалительной реакции происходит мобилизация костномозговых и циркулирующих лейкоцитов, развивается лейкоцитоз, что можно наблюдать в капле нативной крови.

Грибы

Грибы – одноклеточные или многоклеточные гетеротрофные нефотосинтезирующие эукариотические микроорганизмы. Царство грибов насчитывает более 100 000 видов. Среди них встречаются сапрофиты, паразиты и факультативные паразиты растений, животных и человека. Наибольшее значение для медицины имеют несовершенные грибы (около 30 тысяч видов).

К несовершенным грибам, в частности, относятся формы, вызывающие грибковые заболевания ног и стригущий лишай.

В клинической практике известны грибы, вызывающие всевозможные микозы (кератомикозы, дерматомикозы и др.), а также возбудители оппортунистических микозов: Candida, Mucor, Aspergillus, Penicillium, Fusarium.

Форма, размеры и мицелий специфичны для каждого вида.

К самым известным «обитателям» человека безусловно относится Candida, которая является частью условно-патогенной и транзиторной микрофлоры млекопитающих и человека. На фоне ослабленного иммунитета, при попадании в ткани данная эндогенная флора вызывает кандидозы различной локализации: пневмонии, бронхиты, язвенные процессы в ЖКТ, циститы и др.

Поскольку грибы являются клетками размером от 0,5 до 10–15 мкм, а гифы и мицелий измеряются десятками микрометров, они прекрасно видны в световой микроскоп. В крови Candida визуализируется в виде белых округлых или овальных образований. Гораздо сложнее их идентифицировать, учитывая колоссальное разнообразие форм. Только род Candida насчитывает около 200 видов несовершенных дрожжеподобных и совершенных дрожжевых грибов.

Достаточно часто в крови можно встретить микроорганизмы дрожжевых и диморфных грибов в стадии почкования, характерным признаком которых является плотная, четко очерченная поверхность.

Чтобы различать клетки грибов от клеток крови, нужно учитывать, что грибы кроме мембраны имеют многослойную ригидную клеточную стенку.

Этот факт существенно помогает отличить, например, деформированный эритроцит от клетки гриба.

Микроорганизмы

(апатогенные и патогенные)

Пожалуй, одним из самых интересных результатов исследований с помощью метода микроскопии нативной крови стало обнаружение в ней различных форм жизни. Большинство врачей до сих пор твёрдо убеждены, что кровь – стерильна! Это — миф, разрушить который оказалось очень сложной задачей.

Справедливости ради необходимо отметить, что в естественных науках (биологии, микробиологии и др.) никогда и не постулировалось положение о стерильности крови, исходя из многочисленных наблюдений и того факта, что кровь – это основная транспортная система организма.

Разрешающая способность современной аппаратуры позволяет нам при проведении МНК визуализировать достаточно большое количество живых (движущихся) микроорганизмов в крови.

Возникают следующие вопросы: может быть нарушены правила асептики и антисептики при проведении анализа, или, возможно, вся эта «живность» попадает из воздуха?

В большинстве случаев это не так! Данные отечественной и зарубежной науки, а также собственные исследования показали, что визуализируемые в крови микроорганизмы, попали на предметное стекло из кровеносного русла. Кровь же является для них средой обитания либо транслокации. И это вполне логично, мы живем в природе, а человек – это открытая система.

Сегодня уже всем известен факт присутствия в организме человека достаточно большого количества самых разнообразных микроорганизмов, которые образуют его биоценоз. При этом следует помнить, что даже в норме, кроме облигатной микрофлоры, у человека в его внутренней среде присутствуют также условно-патогенные и транзиторные микроорганизмы.

Основная их среда обитания у человека – это ЖКТ, вагина, уретра. Но при определённых условиях микрофлора может заселять и несвойственные ей ниши, вызывая различные заболевания, такие как пневмонии, бронхиты, тонзиллиты, циститы и др. Расселение ее по организму происходит, в основном, гематогенным путем. По данным микробиологов, 70 % микроорганизмов – гемоформы, то есть пути их транслокации по организму проходят через кровь.

Считается, что приблизительно 40 % всей патологии человека прямо или косвенно связано с пагубной деятельностью патогенной и транзиторной микрофлоры. Заболевание может вызывать также и факультативная флора, например при увеличении количества микробных тел либо снижении общего и/или местного иммунитета.

Уникальная способность бактерий приспосабливаться и выживать в экстремальных условиях, длительно персистировать в организме, не вызывая клинических проявлений, и склонность к полиморфизму позволяет им благополучно выживать даже после антибиотикотерапии.

Бактерии могут не находиться в крови постоянно, а лишь транзиторно проходить через нее. В этом случае их наличие в крови не всегда является признаком патологии. О том, что микроорганизмы, визуализируемые в препарате нативной крови, могут быть причиной заболевания, можно думать в случае увеличения их количества, появлении ассоциаций (разнообразия форм), а также при наличии соответствующей клинической картины.

Часть этих форм обитает в крови, другая попадает туда транзиторно, перемещаясь по организму, реализуя предназначенный природой жизненный цикл.

Процедура сдачи общего анализа крови

Перед визитом в клинику не рекомендовано принимать пищу. Также в течение нескольких дней следует прекратить прием медикаментов (только по рекомендации врача). Процедура проводится утром. Забор крови делают из пальца или вены.

Таблица – Нормы общего анализа крови для взрослых

Показатель

Норма для женщин

Норма для мужчин

Эритроциты, 1012/л

от 3,8 до 4,5

4,4-5,0

Гемоглобин, г/л

от 120 до 140

130-160

Лейкоциты, 109/л

от 4,0 до 9,0

4,0-9,0

Цветовой показатель

от 0,8 до 1,0

0,8-1,0

Гематокрит, %

от 35 до 45

39-49

Ретикулоциты, %

от 0,2 до 1,2

0,2-1,2

Тромбоциты, 109/л

от 170,0 до 320,0

180,0-320,0

СОЭ, мм/час

от 2 до 20

2-20

Из таблицы выше следует что, нормы анализа крови у мужчин и женщин отличаются. Во время беременности также изменяются показатели анализа крови.

У беременных женщин норма эритроцитов от 3,5 до 5,6∙1012 клеток/л, лейкоцитов в первом триместре от 4,0 до 9,0∙109 клеток/л. Со второго — до 11,0∙109 клеток/л, с третьего – до 15,0∙109 клеток/л. Уровень гемоглобина — 140-160 г/л.

Список литературы

  1. Атлас. Микроскопия нативной крови / Морылева О.Н., под ред. Анисимовой О.О. – М., «Типография «Новости», 2009. – 104 с.

  2. Атлас по медицинской микробиологии, вирусологии и иммунологии// Под редакцией Быкова А.С., Воробьева А.А., Зверева В.В. — М.: МИА, 2008. — 272 с.: ил.

  3. Атлас клеток крови и костного мозга // Под редакцией Козинца Г.И. —М.: «Триада-Х», 2004. —160 с.: ил.

  4. Березов Т.Т., Коровкин Б.Ф. Биологическая химия / М.: Медицина, 2002. – 704с.

  5. Высоцкий В.В., Заславская П.Л., Машковцева А.В., Баулина О.И. Полиморфизм как закономерность развития популяций прокариотных микроорганизмов. /М.,1991.– 258 с.

  6. Долгов В.В., Золотокрылина Е.С. Лабораторная диагностика при шоковых состояниях. /М., 1998. – 385 с.

  7. Долгов В.В., Миронова И.И., Романова Л.А. Общеклинические исследования. М.,2005. – 457 с.

  8. Зайчик А.Ш., Чурилов Л.П. Общая патофизиология /Учебник для медицинских ВУЗов. СПб.:2005. – ЭЛБИ-СПб, 656 с.

  9. Зайчик А.Ш., Чурилов Л.П. Основы патохимии / СПб.:2003. – ЭЛБИ-СПб, 688 с.

  10. Исследование системы крови в клинической практике / Под ред. Г. И. Козинца, В. А. Макарова. — М., 1997, 346 с.

  11. Клетки крови. Современные технологии их анализа / Козинец Г. И., Погорелов В. М., Шмаров Д. А. и др. — М., 2002.

  12. Козинец Г.И. Интерпретация анализов крови и мочи и их клиническое значение, 1998.

  13. Козинец Г. И. Физиологические системы организма человека, основные показатели. / М.,2000. — 243 с.

  14. Луговская С.А., Морозова В.Т., Почтарь М.Е. Лабораторная гематология / М.,2002. – 586 с.

  15. Мецлер Д. Биохимия / три тома, 1999

  16. Мосягина Е. Н., Владимирская Е. Б., Торубарова Н. А., Мызина Н. В. Кинетика форменных элементов крови. — М., 1976, 257 с.

  17. Морозова В. Т. Клиническая лабораторная диагностика — 2008. — № 8. — С. 32—36.

  18. Основы микробиологии, вирусологии, иммунологии // Под редакцией Воробьева А.А., Зверева В.В.—М.: Издательский центр «Академия», 2004. —456 с.: ил.

  19. Приказ МЗ РФ № 64 от 21.02.2000 «Номенклатура клинических лабораторных исследований, применяемых в целях диагностики болезней и слежения за состоянием пациентов в учреждениях здравоохранения РФ».

  20. Соболева Т.Н., Владимирская Е.Б. Морфология клеток крови в нормальном кроветворении / М.,2001. – 452 с.

  21. Тропические болезни// Под редакцией Шуваловой А.П.. —М.: Мир, 1996.—545с.

  22. Фриденштейн А. Я., Лурия Е. А. Клеточные основы кроветворного микроокружения. /М., 1980. — 147 с.

  23. Шабалова И.П. Цитологический атлас /М.,2001. – 673 с.

Фибриноген и фибрин

Фибриноген – белок острой фазы воспаления и один из основных факторов свёртывания крови. Синтез фибриногена происходит в печени.

При микроскопическом исследовании нативной крови можно видеть продукт полимеризации фибриногена – фибрин.

Механизм образования фибрина in vivo состоит из трех этапов:

1. Под влиянием тромбина от фибриногена отщепляются фибринопептиды А и В, в результате чего образуются мономеры фибрина. Эта реакция происходит при обязательном участии протеолитических ферментов.

2. При участии кальция происходит агрегация и полимеризация мономеров. Образуется растворимый фибрин.

3. От растворимого фибрина с помощью ферментов отщепляется сиаловая кислота, что ведет к образованию нерастворимого фибрина и формированию сгустка.

In vitro процесс протекает несколько иначе. Через некоторое время после взятия крови запускается процесс ее свёртывания и на препарате появляются нити фибрина в виде нежных темных полос на фоне прозрачной плазмы. Иногда нити фибрина настолько тонки, что практически неразличимы в микроскоп, что, конечно, не означает их полного отсутствия.

Через 10–15 минут при участии тромбоцитов начинается ретракция кровяного сгустка и процесс фибринолиза.

При заболеваниях фибрин выпадает очень быстро и нити его значительно грубее. Это зависит от исходного содержания в плазме фибриногена. А его уровень, как известно, повышается при целом ряде заболеваний.

Нарушения в питании, наследственные факторы, определённые патологические состояния и заболевания (сахарный диабет, гиперхолестеринемия), курение, алкоголь, неблагоприятные социальные условия и стрессы, токсические влияния и целый ряд фармакологических средств, а также возраст влияют на концентрацию фибриногена в крови.

Антиоксиданты (природные витамины А, С, Е и готовые формы атиоксидантов, таких как микрогидрин, фикотен, фитоси), свежие фрукты и овощи, а также достаточная физическая нагрузка также выраженно способствуют снижению уровня фибриногена и фибрина (см. фото, Атлас нативной крови).

Учитывая всё изложенное, целесообразно регулярно и в течение длительного времени проводить повторные исследования нативной крови и оценивать динамику свёртывающей системы по указанным визуальным признакам. Особенно это актуально для пациентов, относящихся к группам риска развития сердечно-сосудистых заболеваний.

Эритроциты

Эритроциты – самая многочисленная популяция клеток крови. Количество эритроцитов в крови в норме поддерживается на постоянном уровне и составляет 3,5–5,0х1012 в одном литре.

Продолжительность жизни эритроцита человека в среднем 120 суток.

Наибольшее число эритроцитов имеет диаметр — 7,2–7,5 мкм, площадь поверхности — 140 мкм2, объем – 90 мкм3. Такую большую поверхность клетка имеет благодаря своей дискоидной двояковогнутой форме, которая совместно с высокой пластичностью и деформабельностью мембраны позволяет эритроциту проходить через капилляры шириной 2–3 мкм, проникать в стенки синусоидов, возвращаясь к исходным параметрам.

Для описания эритроцитов в клинической лабораторной практике принята специальная терминология. Обозначим сейчас основные наиболее часто встречающиеся термины.

Анизоциты – эритроциты разного размера.

Анизоцитоз – состояние, при котором явно выражена вариация размеров эритроцитов.

Анизохромия – различная окраска эритроцитов.

Гиперхромия – интенсивная окраска эритроцитов, связанная с повышенным насыщением гемоглобином (микропрепарат: отсутствие или уменьшение центрального просветления у эритроцита).

Гипохромия – снижение плотности окраски эритроцитов (микропрепарат: увеличение размера центрального просветления и уменьшение интенсивности окраски эритроцита).

Дакриоциты (каплевидные эритроциты) – эритроциты в виде капли.

Микроциты – эритроциты диаметром менее 6,5 мкм.

Микроцитоз – состояние, при котором преобладают микроциты.

Макроциты – эритроциты диаметром более 8–9 мкм.

Макроцитоз – состояние, при котором преобладают макроциты.

Мегалоциты – эритроциты диаметром более 10–12 мкм.

Монетные столбики – агрегаты эритроцитов.

Нормоцит – двояковогнутый эритроцит нормального размера (7,0–7,8 мкм) с центральным просветлением.

Нормобласт – ядросодержащий эритроцит, клетка – предшественник ретикулоцита. В норме в периферической крови не встречается.

Акантоциты – эритроциты с многочисленными шипиками различной величины.

Мишеневидные эритроциты – клетки с центральным расположением гемоглобина в виде мишени.

Овалоциты – эритроциты овальной формы.

Ретикулоциты – молодые эритроциты без центрального просветления (диаметр 7,7–8,5 мкм), образуются после потери нормобластами ядер.

Сфероциты – эритроциты сферической формы без центрального просветления.

Стоматоциты – эритроциты, центральное просветление которых имеет вид полоски или рта. При стоматоцитарной трансформации также могут образоваться сферостоматоциты, но в отличие от сфероэхиноцитов они не имеют шипов.

Шизоциты – фрагменты разрушенных эритроцитов. При прохождении через узкие сосуды и бифуркации под давлением часть эритроцитов механически повреждается и теряет форму двояковогнутого диска. Фрагменты этих эритроцитов подвергаются гемолизу или утилизируются нейтрофилами.

Шлемовидные эритроциты – фрагменты разрушенных эритроцитов в форме шлема.

Эхиноцит – эритроцит с шипами одинакового размера, расположенными равномерно по поверхности клетки. Выделяют эхиноциты трех стадий трансформации.

Этапы использования крови — центр крови

При помощи устройства, называемого сепаратором, компоненты крови отделяются друг от друга. Под оптическим контролем в отдельные мешки собираются плазма (на картинке слева) и эритроциты (справа от машины, на весах). В первичном мешке остается слой тромбоцитов и лейкоцитов. Разделение компонентов длится две-три минуты.

К красным кровяным тельцам в процессе обработки добавляется питательный раствор — для того, чтобы в течение срока хранения клетки оставались живыми. Полученный результат называется суспензией эритроцитов; его в больницах переливают чаще всего. Из одной дозы цельной крови одного донора получают одну лечебную дозу суспензии эритроцитов для взрослого пациента или несколько меньших лечебных доз для детей.

Плазму после ее отделения помещают в быстрозамораживатель, где ее охлаждают до температуры –30 градусов в течение нескольких часов. Быстрая (шоковая) заморозка сохраняет от разложения находящиеся в плазме вещества, обеспечивающие свертывание крови, и когда замороженную плазму вновь размораживают для переливания, эти вещества вновь активизируются.

Тромбоциты и лейкоциты, оставшиеся в первоначальном мешке, подвергают дополнительной процедуре. Тромбоциты и лейкоциты от трех-четырех доноров с одной и той же группой крови сливают вместе, затем полученный продукт вновь пропускают через центрифугу. Образуется слой лейкоцитов и тромбоцитов. Лейкоциты для переливания крови применять нельзя, их отделяют. Конечный результат представляет собой концентрат кровяных пластинок (тромбоцитов).

Протокол заключения

Ф.И.О. пациента

Дата рождения

Пол М Ж

Ф.И.О. врача

Показатель

Характеристика показателя

Параметры

Эритроциты

Агрегация клеток

отсутствует,

умеренная, выраженная

Размер клеток

нормоциты, микроциты, макроциты, мегалоциты

анизоцитоз

, , ,

Окраска

нормохромные, гипохромные гиперхромные

Форма клеток

дискоидная, измененная

пойкилоцитоз

эхиноциты I, II, III порядка; сфероэхиноциты;

стоматоциты I, II, III порядка; сферостоматоциты;

сфероциты микро-, макро-;

другое:

Включения

нет; ; ; ;

Тромбоциты

Размер

норма, микро-, макро-

Агрегация

нет, , ,

Лейкоциты

Активность

норма, снижена, повышена

Размер

норма, ниже нормы, выше нормы

Сегментация ядер

Норма, гиперсегментация

Эозинофилы

Нет, единичные, значительное количество

Плазма

Фибрин

-, , ,

Хиломикроны

-, , ,

Бактерии

-, , ,

Другие

микроорганизмы

-, , ,

Заключение по наличию изменений в крови и результатам пробы (характеристика адаптационных резервов организма (АРО)):

  • АРО — удовлетворительные;
  • АРО — умеренное отклонение показателей от нормы;
  • АРО — выраженное отклонение показателей от нормы.

Превентивная диетотерапия

По результатам исследования в качестве корректоров рациона питания осуществляется индивидуальный подбор БАД к пище (…) с целью оптимизации физиологических функций организма и повышения адаптационных резервов.

Дата «____» ___________ 20___ г

Врач __________________

Оцените статью
Дача-забор
Добавить комментарий